THE UNIQUE CONFORMATIONAL STABILITY OF POLY 2'-O-ETHYLADENYLIC ACID

M. KHURSHID A. KHAN* and Fritz M. ROTTMAN

Department of Biochemistry, Michigan State University, East Lansing, Michigan 48823, USA

Received 18 September 1972

1. Introduction

Considerable effort has been made to elucidate the role of 2'-OH groups on the stability and ordered conformation of RNA. Earlier it had been postulated that intramolecular hydrogen bonding between the 2'-OH moiety and nearby groups in the polymer chain contributed to this stability [1, 2]. However, the evidence derived from a study of the physical characteristics of poly 2'-O-methyladenylic acid (poly Am) indicated that 2'-O-methyl groups did not impair the stability of single- or double-stranded polymers [3]. This implies that hydrogen bonding involving the 2'-OH group is not a major factor in the stabilization of ordered structures of polyribonucleotides. Among various other factors to be considered, the steric environment at the 2'-position may influence the conformation of polynucleotides, perhaps through an altered conformation of the pentose ring. In order to investigate this possible steric effect, a polymer containing the bulkier 2'-O-ethyl group (poly 2'-O-ethyladenylic acid) was synthesized.

The temperature absorbance profile of poly 2'-O-ethyladenylic acid indicates that it has an even greater tendency for ordered structure than poly rA (polyadenylate) or poly 2'-O-methyladenylic acid, thus suggesting that the bulkier group does indeed enhance conformational stability.

2. Materials and methods

Descending paper chromatography was carried out on Whatman No. 1 paper in the following solvent systems: (A) isopropyl alcohol—NH₄OH—0.1 M boric acid (7:1:2), (B) ethyl acetate—propyl alcohol—H₂O (4:1:2, upper phase), (C) butyl alcohol—NH₄OH—H₂O (86:5:14), (D) ethyl alcohol—1 M ammonium acetate, pH 7.5 (7:3), (E) propyl alcohol—NH₄OH—H₂O (55:10:35) and (F) saturated ammonium sulfate—H₂O—isopropyl alcohol (78:18:2).

Micrococcus luteus polynucleotide phosphorylase (type I) was purchased from P-L Biochemicals, Inc.

2,1. 2'-O-Ethyladenosine

The synthesis was carried out by a modification of the method used for the preparation of 2'-O-methyladenosine [4]. Two grams of adenosine in 80 ml of water was heated to 80° and mixed with a solution of diazoethane [5] (generated from 40 g of nitroethyl urea) in 200 ml of 1,2-dimethoxy ethane. After stirring overnight at room temperature, the crude reaction mixture was evaporated to dryness, redissolved in 40% ethanol and chromatographed on Bio-Rad AG 1-X2 (OH⁻), 200-400 mesh. Elution with 40% ethanol gave pure 2 '-O-ethyladenosine in 12% yield.

The purity of 2'-O-ethyladenosine was checked in solvent systems A, B, C and D. The product was further characterized by perchloric acid hydrolysis and determination of the liberated ethanol by gas chromatography [6]. Mass spectral analysis also indicated that the product was 2'-O-ethyladenosine [7].

^{*} Present address: Pakistan Council of Scientific and Indusstrial Research Laboratories, University Road, Karachi,

Table 1 Paper chromatography of ribose-, 2'-O-methylribose-, and 2'-O-ethylribose-containing nucleosides and nucleotides.

R_f	R_f
Solvent A	Solvent D
0.41	0.65
0.63	0.77
0.71	0.81
0.04	0.19
0.18	0.30
0.25	0.41
0.03	0.08
0.15	0.17
0.20	0.35
	0.41 0.63 0.71 0.04 0.18 0.25 0.03 0.15

2.2. 2'-O-ethyladenosine 5'-phosphate

The phosphorylation of 2'-O-ethyladenosine was carried out by the method of Yoshikawa [8] using POCl₃ in triethyl phosphate. Pure 2'-O-ethyladenosine 5'-phosphate was isolated by chromatography on Bio-Rad AG 1-X2 (formate), 200–400 mesh. The monophosphate was homogeneous in solvent systems A, C and F and was obtained in 65% yield from the nucleoside.

2.3. 2'-O-Ethyladenosine 5'-diphosphate

The diphosphate was prepared by the displacement of its morpholidate derivative with the tri-*n*-butylamine salt of orthophosphate [9]. The pure diphos-

phate was isolated by chromatography on Bio-Rad AG 1-X2 (Cl⁻), 200–400 mesh using a gradient of 0–0.2 M LiCl in 0.01 M HCl. The diphosphate was further purified on DEAE-cellulose by elution with a 0–0.3 M ammonium bicarbonate gradient to give the pure diphosphate in 66% yield from the monophosphate. The product was homogeneous in solvent systems A and D (table 1) and upon complete acid hydrolysis released 1.92 moles of inorganic phosphorus/mole of nucleotide.

2.4. Poly 2'-O-ethyladenylic acid

The polymer (poly Ae) was synthesized in > 40%yield from the diphosphate using polynucleotide phosphorylase. The rate of polymerization was followed by determination of liberated inorganic phosphate. A typical 100 µl reaction mixture contained: 2'-O-ethyladenosine diphosphate, 25 mM; Tricine, pH 8.5, 150 mM; EDTA, 0.4 mM; MnSO₄, 10 mM; dithiothreitol, 6 mM; sodium azide, 1 mM; and 2.24 mg of polynucleotide phosphorylase. After incubation at 37° for 90 hr, the reaction mixture was deproteinized by shaking repeatedly with a mixture of isoamyl alcohol and chloroform and the polymer was purified by chromatography over Sephadex G-50. Elution with 0.1 M ammonium bicarbonate in 20% ethanol gave the pure polymer which was lyophilized several times to remove the bicarbonate.

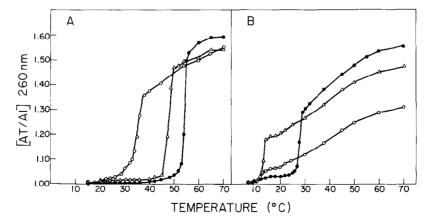


Fig. 1. (A) Absorbance—temperature profiles of poly rA ($\bigcirc \bigcirc \bigcirc$), poly Am ($\triangle \bigcirc \triangle$), and poly Ae ($\bullet \bullet \bullet \bullet$) in 0.15 M NaCl, 0.01 M cacodylate at pH 5.7. A_T/A_I is the ratio of absorbance at temperature T over absorbance at initial temperature. (B) Absorbance—temperature profiles of poly rA ($\bigcirc \bigcirc \bigcirc$), poly Am ($\triangle \bigcirc \triangle$), and poly Ae ($\bullet \bullet \bullet \bullet$) in 0.15 M NaCl, 0.01 M cacodylate at pH 7.0.

3. Results and discussion

The results indicate that polynucleotide phosphorylase can utilize 2'-O-ethyladenosine 5'-diphosphate as a substrate although the rate of polymerization is even slower than that obtained with 2'-O-methyladenosine 5'-diphosphate [10]. The polymerization proceeded optimally at 37° and increasing the temperature in increments up to 55° led to a slower reaction. Similarly, varying the amount of Mn²⁺ in the reaction mixture from 2.5 to 20 mM yielded a slower polymerization rate.

Chromatography of poly Ae on Whatman No. 1 in solvent E indicated that all of the UV absorbing material stayed at the origin along with standard samples of poly rA and poly Am. As expected, treatment of poly Ae with 0.1 M NaOH for 18 hr at 37° was without effect. Hydrolysis of the polymer was achieved by the combined actions of snake venom phosphodiesterase, micrococcal nuclease and E. coli alkaline phosphatase [10]. Subsequent chromatography of this reaction mixture in solvent system A and C showed only free nucleoside, i.e., 2'-O-ethyladenosine. The size of the polymer was determined by sucrose density gradient centrifugation using 5-20% sucrose in 0.1 M potassium acetate and 0.02 M Tris acetate, pH 9.0. The results indicated a heterodisperse polymer of greater than 14 S in length.

The absorbance—temperature (Tm) profile of poly Ae was determined at pH 5.7 and 7.0 and compared with that of poly rA and poly Am (fig. 1). Poly Ae showed a cooperative transition at pH 5.7 (fig. 1A), the Tm being 55°. Under identical conditions poly rA and poly Am also show a cooperative transition, but the Tm of the cooperative melt is 35° and 48°, respectively, which is significantly lower than that of poly Ae.

At pH 7.0 (fig. 1B) the temperature absorbance profiles show that poly rA melts non-cooperatively, while poly Am and poly Ae exhibit a partial cooperative transition with a Tm of 13.5° and 28°, respectively. This clearly indicates that an ethyl group at the 2'-position of an adenine-containing polymer has a greater stabilizing influence than a methyl group. Further confirmation of this stabilizing influence is provided by the determination of extinction coefficients at pH 7.0 for poly rA, poly Am and poly Ae. In 0.01 M cacodylate and 0.15 M NaCl the extinction

coefficients for poly rA, poly Am and poly Ae at 260 nm and 25° are 9.1, 7.9 and 6.5×10^{3} per mole of nucleotide phosphate, respectively. Preliminary experiments also indicate that poly Ae forms a stable duplex with poly rU.

The temperature absorption profiles of polynucleotides at pH 5.7 and pH 7.0 indicate that under identical conditions the 2'-0-ethyl-containing polymer possesses a greater conformational stability than poly rA and poly Am and consequently exhibits increased hyperchromicity which lies in the order poly Ae > poly Am > poly rA. Other 2'-substitutions in uracil-containing polymers such as 2'-Cl- [11], 2'-F- [12] and 2'-NH $_2$ - [13] have been reported to decrease ordered structure in comparison to the corresponding ribopolymer, while 2'-methoxy [3] and 2'-azido [14] groups enhance ordered polynucleotide structure.

Although a complete explanation of these observations is not clear at the present time, it may be suggested that steric factors near the 2'-position of the ribose ring may play a prominent role in the stability and structure of polynucleotides, including those of RNA and DNA.

Acknowledgements

This work was supported in part by Grant GB-20764 from the National Science Foundation and a special grant from Smith Kline and French Laboratories. Michigan Agricultural Experiment Station Article No. 5990.

References

- [1] P.O.P. Tso, S.A. Rapaport and F.J. Bollum, Biochemistry 5 (1966) 4153.
- [2] J. Brams, J.C. Maurizot and A.M. Michelson, J. Mol. Biol. 25 (1967) 481.
- [3] A.M. Bobst, F. Rottman and P.A. Cerutti, J. Mol. Biol. 46 (1969) 221.
- [4] A.D. Broom and R.K. Robins, J. Am. Chem. Soc. 87 (1965) 1145.
- [5] E.A. Werner, J. Chem. Soc. (London) 115 (1919) 1093.
- [6] J. Abbate and F. Rottman, Anal. Biochem. 47 (1972) 378.
- [7] L. Pike and F. Rottman (1972) unpublished results.
- [8] M. Yoshikawa et al., Tetrahedron Letters 50 (1967) 5065.

- [9] J.G. Moffatt, Methods Enzymol. 12 (1967) 182.
- [10] F. Rottman and K. Heinlein, Biochemistry 7 (1968) 2634.
- [11] J. Hobbs, H. Sternbach and F. Eckstein, FEBS Letters 15 (1971) 345.
- [12] B. Janik et al., Biochem. Biophys. Res. Commun. 46 (1972) 1153.
- [13] J. Hobbs, H. Sternbach and F. Eckstein, Biochem. Biophys. Res. Commun. 46 (1972) 1509.
- [14] P.F. Torrence, J.A. Waters and B. Witkop, J. Am. Chem. Soc. 94 (1972) 3638.